СТАТИСТИКА |
№ п/п | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
Рост, см | 152 | 155 | 157 | 160 | 163 | 165 | 166 | 166 | 166 | 169 | 170 | 170 | 171 | 172 | 171 | 175 | 179 | 180 | 181 | 184 |
Данный ряд является ранжированным, так как значения роста упорядочены по возрастанию.
Построим интервальный ряд распределения студентов по росту, для чего необходимо выбрать оптимальное число групп (интервалов признака) и установить длину (размах) интервала. Поскольку при дальнейшем анализе ряда распределения сравнивают частоты в разных интервалах, необходимо, чтобы длина интервалов была постоянной (иначе для сопоставимости придется частоты делить на единицу интервала - полученное значение называется плотностью).
Оптимальное число групп выбирается так, чтобы в достаточной мере отразилось разнообразие значений признака в совокупности и в то же время закономерность распределении, его форма не искажалась случайными колебаниями частот. Если групп будет слишком мало, то не проявится закономерность вариации; если групп будет чрезмерно много, то случайные скачки частот исказят форму распределения.
Чаще всего число групп в ряду распределения определяют по формуле Стерждесса:
или
где k – число групп (округляемое до ближайшего целого числа); N – численность совокупности.
В нашем примере про студентов по формуле Стерждесса определим число групп: k = 1 + 3,322lg20 = 5,32. Так как число групп не может быть дробным, то округляем k = 5,32 до ближайшего целого числа по правилам округлений - 5.
Зная число групп, рассчитывают длину (размах) интервала по формуле:
В нашем примере про студентов h = (184 - 152)/5 = 6,4 (см). То есть для построения интервального ряда распределения нужно 20 студентов разбить на 5 групп с интервалом по 6,4 см. Представим интервальный ряд распределения студентов по росту в виде таблицы:
Рост, см | 152 - 158,4 | 158,4 - 164,8 | 164,8 - 171,2 | 171,2 - 177,6 | 177,6 - 184 | Итого |
Число студентов | 3 | 2 | 8 | 3 | 4 | 20 |
Многомерная группировка производится по двум и более признакам. Частным случаем многомерной группировки является комбинационная группировка, базирующаяся на двух и более признаках, взятых во взаимосвязи.
По отношениям между признаками выделяют: иерархические группировки, выполняемые по двум и более признакам, при этом значения второго признака определяются областью значений первого (например, классификация отраслей промышленности по подотраслям); неиерархические группировки, когда строгой зависимости значений второго признака от первого не существует.
По очередности обработки информации группировки бывают первичными, составленные на основе первичных данных, и вторичные, являющиеся результатом перегруппировки ранее уже сгруппированного материала.
В соответствии со временным критерием различают статические группировки, дающие характеристику совокупности на определенный момент или за определенный период, и динамические, показывающие переходы единиц из одних групп в другие.